Essays on Text Mining for Improved Decision Making
نویسندگان
چکیده
We investigate the issue of predicting new customers as profitable based on information about existing customers in a business-to-business environment. In particular, we show how latent semantic concepts from textual information of existing customers’ websites can be used to uncover characteristics of websites of companies that will turn into profitable customers. Hence, the use of predictive analytics will help to identify new potential acquisition targets. Additionally, we show that a regression model based on these concepts is successful in the profitability prediction of new customers. In a case study, the acquisition process of a mail-order company is supported by creating a prioritized list of new customers generated by this approach. It is shown that the density of profitable customers in this list outperforms the density of profitable customers in traditional generated address lists (e. g. from list brokers). From a managerial point of view, this approach supports the identification of new business customers and helps to estimate the future profitability of these customers in a company. Consequently, the customer acquisition process can be targeted more effectively and efficiently. This leads to a competitive advantage for B2B companies and improves the acquisition process that is timeand cost-consuming with traditionally low conversion rates.
منابع مشابه
Classifying Unstructured Textual Data Using the Product Score Model: An Alternative Text Mining Algorithm
Unstructured textual data such as students’ essays and life narratives can provide helpful information in educational and psychological measurement, but often contain irregularities and ambiguities, which creates difficulties in analysis. Text mining techniques that seek to extract useful information from textual data sources through identifying interesting patterns are promising. This chapter ...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملA new model for mining method selection based on grey and TODIM methods
One of the most important steps involved in mining operations is to select an appropriate extraction method for mine resources. After choosing the extraction method, it is usually impossible to replace it with another one because it may be so expensive that implementation of the entire project could be economically impossible. Choosing a mining method depends on the geological and geometrical c...
متن کاملApplication of an integrated decision-making approach based on FDAHP and PROMETHEE for selection of optimal coal seam for mechanization; A case study of the Tazareh coal mine complex, Iran
Increasing the production rate and minimizing the related costs, while optimizing the safety measures, are nowadays’ most important tasks in the mining industry. To these ends, mechanization of mines could be applied, which can result in significant cost reductions and higher levels of profitability for underground mines. The potential of a coal mine mechanization depends on some important fact...
متن کاملFinancial Text Mining: Supporting Decision Making Using Web 2
Deep penetration of personal computers, data communication networks, and the Internet has created a massive platform for data collection, dissemination, storage, and retrieval. Everyday, people engage in numerous online activities, including reading the news and product reviews, commenting on developing events, buying and selling stocks, and widening their social networks. This widespread engag...
متن کامل